Clouds are one of the most serious disturbances when using satellite imagery for ground observations. The semi-translucent nature of thin clouds provides the possibility of 2D ground scene reconstruction based on a single satellite image. In this paper, we propose an effective framework for thin cloud removal involving two aspects: a network architecture and a training strategy. For the network architecture, a Wasserstein generative adversarial network (WGAN) in YUV color space called YUV-GAN is proposed. Unlike most existing approaches in RGB color space, our method performs end-to-end thin cloud removal by learning luminance and chroma components independently, which is efficient at reducing the number of unrecoverable bright and dark pixels. To preserve more de-tailed features, the generator adopts a residual encoding–decoding network without down-sampling and up-sampling layers, which effectively competes with a residual discriminator, encouraging the accuracy of scene identification. For the training strategy, a transfer-learning-based method was applied. Instead of using either simulated or scarce real data to train the deep network, adequate simulated pairs were used to train the YUV-GAN at first. Then, pre-trained convolutional layers were optimized by real pairs to encourage the applicability of the model to real cloudy images. Qualitative and quantitative results on RICE1 and Sentinel-2A datasets confirmed that our YUV-GAN achieved state-of-the-art performance compared with other approaches. Additionally, our method combining the YUV-GAN with a transfer-learning-based training strategy led to better performance in the case of scarce training data.
CITATION STYLE
Wen, X., Pan, Z., Hu, Y., & Liu, J. (2021). Generative adversarial learning in yuv color space for thin cloud removal on satellite imagery. Remote Sensing, 13(6), 1–22. https://doi.org/10.3390/rs13061079
Mendeley helps you to discover research relevant for your work.