Mutation of a CCG sequence in the 5′-untranslated region of the mitochondrially encoded cytochrome b mRNA in Saccharomyces cerevisiae results in destabilization of the message and respiratory deficiency of the mutant strain. This phenotype mimics that of a mutation in the nuclear CBP1 gene. Here it is shown that overexpression of the nuclear CBT1 gene, due to a transposon insertion in the 5′-untranslated region, rescues the respiratory defects resulting from mutating the CCG sequence to ACG. Overexpressing alleles of CBT1 are allelic to soc1, a previously isolated suppressor of cbp1 ts-induced temperature sensitivity of respiratory growth. Quantitative primer extension analysis indicated that cbt1 null strains have defects in 5′-end processing of precursor cytochrome b mRNA to the mature form. Cbt1p is also required for stabilizing the mature cytochrome b mRNA after 5′ processing. Copyright © 2005 by the Genetics Society of America.
CITATION STYLE
Ellis, T. P., Schonauer, M. S., & Dieckmann, C. L. (2005). CBT1 interacts genetically with CBP1 and the mitochondrially encoded cytochrome b gene and is required to stabilize the mature cytochrome b mRNA of Saccharomyces cerevisiae. Genetics, 171(3), 949–957. https://doi.org/10.1534/genetics.104.036467
Mendeley helps you to discover research relevant for your work.