The International Union of Crystallography (IUCr) Commission on Powder Diffraction (CPD) has sponsored a round robin on the determination of quantitative phase abundance from diffraction data. Specifically, the aims of the round robin were (i) to document the methods and strategies commonly employed in quantitative phase analysis (QPA), especially those involving powder diffraction, (ii) to assess levels of accuracy, precision and lower limits of detection, (iii) to identify specific problem areas and develop practical solutions, (iv) to formulate recommended procedures for QPA using diffraction data, and (v) to create a standard set of samples for future reference. Some of the analytical issues which have been addressed include (a) the type of analysis (integrated intensities or full-profile, Rietveld or full-profile, database of observed patterns) and (b) the type of instrument used, including geometry and radiation (X-ray, neutron or synchrotron). While the samples used in the round robin covered a wide range of analytical complexity, this paper reports the results for only the sample 1 mixtures. Sample 1 is a simple three-phase system prepared with eight different compositions covering a wide range of abundance for each phase. The component phases were chosen to minimize sample-related problems, such as the degree of crystallinity, preferred orientation and microabsorption. However, these were still issues that needed to be addressed by the analysts. The results returned indicate a great deal of variation in the ability of the participating laboratories to perform QPA of this simple three-component system. These differences result from such problems as (i) use of unsuitable reference intensity ratios, (ii) errors in whole-pattern refinement software operation and in interpretation of results, (iii) operator errors in the use of the Rietveld method, often arising from a lack of crystallographic understanding, and (iv) application of excessive microabsorption correction. Another major area for concern is the calculation of errors in phase abundance determination, with wide variations in reported values between participants. Few details of methodology used to derive these errors were supplied and many participants provided no measure of error at all. © 2001 International Union of Crystallography Printed in Great Britain - all rights reserved.
CITATION STYLE
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., & Lwin, T. (2001). Outcomes of the International Union of Crystallography Commission on Powder Diffraction round robin on quantitative phase analysis: Samples 1a to 1h. Journal of Applied Crystallography, 34(4), 409–426. https://doi.org/10.1107/S0021889801007476
Mendeley helps you to discover research relevant for your work.