The Pax genes encode a family of developmental transcription factors that bind to specific DNA sequences via the paired domain and are necessary for the morphogenesis of a variety of tissues. The murine Pax-2 gene, through alternative splicing, encodes two nuclear proteins, Pax-2A and Pax-2B, which are transiently expressed during the differentiation of specific neural cell types and early kidney formation. In order to identify potential in vivo Pax- 2 target sequences, chromatin from embryonic neural tube was immunoprecipitated with Pax-2 specific antibodies and cloned. Two unique immunoprecipitated clones containing three specific Pax-2 binding sites were identified by functional binding assays using Pax-2 proteins produced in both Escherichia coli and eukaryotic cells. In vitro DNA binding assays, using Pax-5 and Pax-8 DNA recognition sequences as well as the three immunopurified Pax-2 binding sites, demonstrated that both forms of the Pax-2 protein bind DNA with a similar specificity and that this binding is mediated by the paired domain. The binding sites identified in this report share significant homology among themselves and with previously defined consensus sequences for Pax-5 and Pax-2. The genomic clones can now be used as sequence tags to identify potential target loci.
CITATION STYLE
Phelps, D. E., & Dressler, G. R. (1996). Identification of novel Pax-2 binding sites by chromatin precipitation. Journal of Biological Chemistry, 271(14), 7978–7985. https://doi.org/10.1074/jbc.271.14.7978
Mendeley helps you to discover research relevant for your work.