A simple method to prepare phosphate/carbonate composites for use as porous sponge-like phosphate fertilizers (ps-PO4Fs) is presented. The composites ps-PO4Fs were prepared by ion-exchange implantation of phosphate onto the surface of vaterite-phase calcium carbonate (CaCO3) microparticles. The ps-PO4Fs obtained under the optimized conditions were found to contain a nanoscale porous network of calcium phosphate covering the CaCO3 support. In addition, ps-PO4Fs exhibited two distinct phosphate release modes having different kinetics: a fast-release step over the initial 24 h period following a parabolic diffusion model, indicating controlled diffusion from external surfaces/edges, and a second slow-release step over the course of a month following the Ritger−Peppas model, indicating the release and diffusion of phosphate adsorbed at specific sites. The ps-PO4Fs also adsorbed glyphosate well because of their porous structure and large surface area. However, glyphosate adsorption prevented phosphate release at concentrations greater than 10 mg L−1. The ps-PO4Fs were tested for their effects on plant growth and showed effects similar to commercial fertilizers. In summary, these smart, eco-friendly, and multifunctional fertilizers having two-stage phosphate release could enable the application of lower amounts of fertilizer and remove excess glyphosate from the environment.
CITATION STYLE
Yukhajon, P., Somboon, T., & Sansuk, S. (2022). Fabrication of Porous Phosphate/Carbonate Composites: Smart Fertilizer with Bimodal Controlled-Release Kinetics and Glyphosate Adsorption Ability. ACS Omega, 7(18), 15625–15636. https://doi.org/10.1021/acsomega.2c00425
Mendeley helps you to discover research relevant for your work.