Decoy Exosomes Offer Protection Against Chemotherapy-Induced Toxicity

19Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cancer patients often face severe organ toxicity caused by chemotherapy. Among these, chemotherapy-induced hepatotoxicity and cardiotoxicity are the main causes of death of cancer patients. Chemotherapy-induced cardiotoxicity even creates a new discipline termed “cardio-oncology”. Therefore, relieving toxicities induced by chemotherapy has become a key issue for improving the survival and quality of life in cancer patients. In this work, mesenchymal stem cell exosomes with the “G-C” abundant tetrahedral DNA nanostructure (TDN) are modified to form a decoy exosome (Exo-TDN). Exo-TDN reduces DOX-induced hepatotoxicity as the “G-C” base pairs scavenge DOX. Furthermore, Exo-TDN with cardiomyopathic peptide (Exo-TDN-PCM) is engineered for specific targeting to cardiomyocytes. Injection of Exo-TDN-PCM significantly reduces DOX-induced cardiotoxicity. Interestingly, Exo-TDN-PCM can also promote macrophage polarization into the M2 type for tissue repair. In addition, those decoy exosomes do not affect the anticancer effects of DOX. This decoy exosome strategy serves as a promising therapy to reduce chemo-induced toxicity.

Cite

CITATION STYLE

APA

Fan, M., Li, H., Shen, D., Wang, Z., Liu, H., Zhu, D., … Li, Z. (2022). Decoy Exosomes Offer Protection Against Chemotherapy-Induced Toxicity. Advanced Science, 9(32). https://doi.org/10.1002/advs.202203505

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free