Inclusion of junction elements in a linear cardiac model through secondary sources: Application to defibrillation

82Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

If a defibrillating stimulus current is applied to a one-dimensional fibre, and if the fibre has junction resistances joining the individual cells, what pattern of transmembrane voltages is induced by the stimulus, and what are the curretns that flow to produce the transmembrane voltages? These questions were considered in an earlier report; in this paper, two additional solution procedures are provided, one exact and one approximate, the latter relatively simple. Earlier work used a resistive model of the cells and junctions, together with a computer solution of 330 simultaneous equations for a 30-cell fibre. The present methods exploit the known solutions for the continuous (zero junctional resistance) fibre together with an analytic treatment of the junctions. With the present methods solution for currents and transmembrane potentials in the same 30-cell fibre requires a solution of only 29 equations (exact method) or the solution of none at all (the approximate method). The results show that, compared with previous results, the exact method provides almost identical transmembrane values; the approximate method gives values within 2 per cent. © 1986 IFMBE.

Cite

CITATION STYLE

APA

Plonsey, R., & Barr, R. C. (1986). Inclusion of junction elements in a linear cardiac model through secondary sources: Application to defibrillation. Medical & Biological Engineering & Computing, 24(2), 137–144. https://doi.org/10.1007/BF02443926

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free