Network Pharmacology and Molecular Docking-Based Investigation of Potential Targets of Astragalus membranaceus and Angelica sinensis Compound Acting on Spinal Cord Injury

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Astragalus membranaceus (Huang-qi, AM) and Angelica sinensis (Dang-gui, AS) are common Chinese herbal medicines and have historically been used in spinal cord injury (SCI) therapies. However, the underlying molecular mechanisms of AM&AS remain little understood. The purpose of this research was to explore the bioactive components and the mechanisms of AM&AS in treating SCI according to network pharmacology and the molecular docking approach. Methods. AM&AS active ingredients were first searched from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Traditional Chinese Medicine Information Database (TCM-ID). Meanwhile, we collected relevant target genes of SCI through the GeneCards database, OMIM database, PharmGkb database, DurgBank database, and TDD database. By utilizing the STRING database, we constructed a network of protein-protein interactions (PPIs). In addition, we used R and STRING to perform GO and KEGG function enrichment analyses. Subsequently, AutoDock Vina was employed for a molecular docking study on the most active ingredients and most targeted molecules to validate the results of the network pharmacology analysis mentioned above. Result. The overall number of AM&AS active compounds identified was 22, while the number of SCI-related targets identified was 159. Then, the 4 key active ingredients were MOL000098 quercetin, MOL000422 kaempferol, MOL000354 isorhamnetin, and MOL000392 formononetin. A total of fourteen core targets were TP53, ESR1, MAPK1, MTC, HIF1A, HSP90AA1, FOS, MAPK14, STAT1, AKT1, EGFR, RELA, CCND1, and RB1. The KEGG enrichment analysis results indicated that lipid and atherosclerosis, PI3K-Akt signaling pathway, human cytomegalovirus infection, fluid shear stress, and atherosclerosis, etc., were enhanced with SCI development. Based on the analyses of docked molecules, four main active compounds had high affinity for the key targets. Conclusions. Altogether, it identified the mechanisms by which AM&AS was used for SCI treatment, namely, active ingredients, targets and signaling pathways. Consequently, further research into AM&AS treating SCI can be conducted on this scientific basis.

Cite

CITATION STYLE

APA

Cao, S., Hou, G., Meng, Y., Chen, Y., Xie, L., & Shi, B. (2022). Network Pharmacology and Molecular Docking-Based Investigation of Potential Targets of Astragalus membranaceus and Angelica sinensis Compound Acting on Spinal Cord Injury. Disease Markers, 2022. https://doi.org/10.1155/2022/2141882

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free