Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

98Citations
Citations of this article
273Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Abstract: In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method. Graphical Abstract: [InlineMediaObject not available: see fulltext.]

Cite

CITATION STYLE

APA

Bicer, Y., Dincer, I., Vezina, G., & Raso, F. (2017). Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes. Environmental Management, 59(5), 842–855. https://doi.org/10.1007/s00267-017-0831-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free