AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmission, and their density at postsynaptic sites determines synaptic strength. Ubiquitination is a posttranslational modification that dynamically regulates the synaptic expression of many proteins. However, very few of the ubiquitinating enzymes implicated in the process have been identified. In a screen to identify transmembrane RING domain-containing E3 ubiquitin ligases that regulate surface expression of AMPARs, we identified RNF167. Predominantly lysosomal, a subpopulation of RNF167 is located on the surface of cultured neurons.Using a RINGmutant RNF167 or a specific shRNA to eliminate endogenous RNF167, we demonstrate that AMPAR surface expression increases in hippocampal neurons with disrupted RNF167 activity and that RNF167 is involved in activity-dependent ubiquitination of AMPARs. In addition, RNF167 regulates synaptic AMPAR currents, whereas synaptic NMDAR currents are unaffected. Therefore, our study identifies RNF167 as a selective regulator of AMPAR-mediated neurotransmission and expands our understanding of how ubiquitination dynamically regulates excitatory synapses.
CITATION STYLE
Lussier, M. P., Herring, B. E., Nasu-Nishimura, Y., Neutzner, A., Karbowski, M., Youle, R. J., … Roche, K. W. (2012). Ubiquitin ligase RNF167 regulates AMPA receptor-mediated synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19426–19431. https://doi.org/10.1073/pnas.1217477109
Mendeley helps you to discover research relevant for your work.