Late-stage magmatic outgassing from a volatile-depleted Moon

47Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

Cite

CITATION STYLE

APA

Day, J. M. D., Moynier, F., & Shearer, C. K. (2017). Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9547–9551. https://doi.org/10.1073/pnas.1708236114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free