This study explores the applicability of vehicle-based laser scanning (VLS) for biomass estimation at individual tree level, since biomass serves as an essential biophysical parameter indicating tree health. Previous work suggests that terrestrial laser scanning (TLS) has been primarily validated for biomass prediction, however, in subject to laborious relocation in practice. VLS, as an advanced mode of TLS with more flexible mobility and also high sampling density, can work as a new efficient technique for surveying single trees. Combined with the positive binds between the biomass and TLS-samplings during manual defoliation, this work aims to seek the relations between biomass and VLS-samplings, by correlating the VLS- and TLS-samplings within the same crowns during natural foliation. The resulting R2 values of the two correlations after normalization are larger than 0.88 and 0.61, respectively, and the associated root mean square errors (RMSEs) are less than 0.051 and 0.076. VLS, thus, can be validated for estimating biomass at the individual tree level, with the TLS-investigated data as a bridging reference. © 2010 by the authors.
CITATION STYLE
Lin, Y., Jaakkola, A., Hyyppä, J., & Kaartinen, H. (2010). From TLS to VLS: Biomass estimation at individual tree level. Remote Sensing, 2(8), 1864–1879. https://doi.org/10.3390/rs2081864
Mendeley helps you to discover research relevant for your work.