Climate change trends and ecosystem resilience in the hindu kush himalayas

11Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

During the past few decades, our understanding of the potential risks from climate change to mountain ecosystem has increased. The Hindu Kush Himalayas (HKH) is characterised by diverse climate due to diversity in geology, monsoon influence and ecosystems. Though paucity in studies, it was observed that the HKH ecosystems witnessed changes in climate over the period with evidence of change in phenology and species range shift altering ecosystem functions. During 1901–2014, annual mean surface air temperature significantly increased in the HKH at a rate of about 0.11 °C per decade showing significant upward trend. The intense precipitation also showed increasing trend in annual intense precipitation amount, days and intensity with 5.28 mm per decade, 0.14 day per decade and 0.39 mm/day per decade respectively. The elevation dependent warming has also been prominent in the HKH with higher warming with the increasing elevation. Higher warming is projected during winter and the projected warming differs by more than 1 °C between the eastern and western HKH, with relatively higher values during winter. The highest warming is projected to be over the central Himalaya for the far-future period with the RCP8.5 scenario. The projections made by the study for the near-future and far-future periods for HKH are relatively higher than the seasonal global means. These changes have indicated that rapidly changing climatic conditions could significantly thwart efforts for ecosystem resilience at a national and regional scales. There have been a wide range of interpretation from observed and people’s perceptions impacting on a wide range of ecosystems and biodiversity at different scales.. However, there is still a major gap in understanding the cross-linkages among areas of research, for example, linking social-ecological knowledge on resilience contributing to evolutionary adaptation. Although numerous important contributions have emerged in recent years, synthesis of such practices and its consequences has not yet been achieved. This chapter is an attempt to relate the climate change science with ecosystem resilience in the HKH, identify gaps, and understand the social-ecological interaction and contribute towards social-ecological resilience.

Cite

CITATION STYLE

APA

Chettri, N., Shrestha, A. B., & Sharma, E. (2019). Climate change trends and ecosystem resilience in the hindu kush himalayas. In Himalayan Weather and Climate and their Impact on the Environment (pp. 525–552). Springer International Publishing. https://doi.org/10.1007/978-3-030-29684-1_25

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free