Effect of asymmetric accumulative roll-bonding process on the microstructure and strength evolution of the AA1050/AZ31/AA1050 multilayered composite materials

17Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

This paper aimed to propose the fabrication of light, Al/Mg/Al multilayered composite. Initially prepared three-layered feedstock was subjected to deformation during four rolling cycles (passes) using the conventional and modified accumulative roll bonding (ARB) processes at 400◦C, thanks to which 24-layered composite materials were produced. The modification of the ARB process was based on the application of the rotational speed asymmetry (asymmetric accumulative roll bonding, AARB). It was adopted that the initial thickness of the composite stack amounted to 3 mm (1 mm for each composite). The rolling was done in the laboratory duo D150 rolling mill with the application of the roll rotational speed asymmetry and symmetry av = 1.0 (ARB) and av = 1.25 and 1.5 (AARB). In this manuscript, it was proved that introducing the asymmetry into the ARB process for the tested Al/Mg/Al composite has an impact on the activation of additional shear bands, which results in higher fragmentation of the structure in comparison to the symmetrical process. Due to the application of the AARB, the reduction of the grain size by 17% was obtained, in comparison to the conventional ARB. Not to mention that at the same time there was an increase in strength of the fabricated multilayered composite.

Cite

CITATION STYLE

APA

Mroz, S., Wierzba, A., Stefanik, A., & Szota, P. (2020). Effect of asymmetric accumulative roll-bonding process on the microstructure and strength evolution of the AA1050/AZ31/AA1050 multilayered composite materials. Materials, 13(23), 1–20. https://doi.org/10.3390/ma13235401

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free