Optimal Control of Energy Systems

  • Farzaneh H
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The heat shock response is associated with the intracellular expression of a number of highly conserved heat shock proteins (Hsps). According to their molecular size, Hsps have been divided into several groups, which are strongly conserved and show high homology between the species, e.g., Hsp70, MW 70 kDa (Lindquist & Craig, 1998; Morimoto, 1998; Jolly & Morimoto, 2000; Zylicz et al. 2001). In all organisms the Hsp expression under stress conditions is regulated at transcriptional level, e.g., in humans by the heat shock transcription factor Hsf1 (Morimoto, 1998; Wu, 1995), while in Escherichia coli by replacement of the sigma factor sigma(70) in RNA polymerase by the sigma factor sigma(32) (Gross, 1987). The Hsps allow cell survival under stress conditions by renaturating of denaturated proteins, protecting of stress-labile proteins, preventing protein aggregation (chaperone functions), and by degradation of damaged proteins (protease activities) (Lindquist & Craig, 1988; Morimoto, 1998; Jolly & Morimoto, 2000). They have also many housekeeping functions under non-stressful conditions during the cell cycle, growth, development, and differentiation (Morimoto, 1998). Among a number of plausible inducing factors already studied, extremely low artificial electromagnetic fields have been shown to induce stress response in various cells, such as expression of sigma(32) mRNA (Cairo et al. 1998) and induction of DnaJ and DnaK proteins in Eschericha coli (Chow & Tung, 2000); expression of hsp-16 gene in Caenorhabditis elegans (Miyakawa et al., 2001); induction of heat shock transcription factor Hsf1 and Hsp70, Hsp90 and Hsp27 in human cells (Lin et al. 1997; Lin et al. 1998; Goodman & Blank, 1998; Pipkin et al. 1999). Nevertheless, the role of endogenous electromagnetic fields, i.e., generated by electrically active cells within a body remains controversial. Heat shock proteins (Hsps) protect cells against various environmental and endogenous stressors. Cytoprotection caused by Hsps involves tolerance induced by one agent against other, more severe agents. We have found that exposure of prokaryotic (Escherichia coli) and eukaryotic (Caco-2) cells to an electrical field (EF) connected with a myoelectrical migrating complex (MMC) generated by the small intestine smooth muscle induces the heat shock response. Using Western blot analysis, we have detected an elevated level of sigma factor 32 in E. coli cells exposed to MMC-related EF, and confocal microscopy indicated an increased level of the inducible form of Hsp70 protein in EF-stimulated Caco-2 cells. Additionally, we have found that this induced level of Hsp70 protected the Caco-2 cells against apoptosis caused by camptothecin. Our observations suggest that the myoelectrical activity of the gut may induce heat shock mechanisms in the cells of gut epithelium as well as in gastrointestinal micro-organisms.

Cite

CITATION STYLE

APA

Farzaneh, H. (2019). Optimal Control of Energy Systems. In Energy Systems Modeling (pp. 131–147). Springer Singapore. https://doi.org/10.1007/978-981-13-6221-7_6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free