During pregnancy, cells from each fetus travel into the maternal circulation and organs, resulting in the development of microchimerism. Identification of the cell types in this microchimeric population would permit better understanding of possible mechanisms by which they affect maternal health. However, comprehensive analysis of fetal cells has been hampered by their rarity. In this study, we sought to overcome this obstacle by combining flow cytometry with multidimensional gene expression microarray analysis of fetal cells isolated from the murine maternal lung during late pregnancy. Fetal cells were collected from the lungs of pregnant female mice. cDNA was amplified and hybridized to gene expression microarrays. The resulting fetal cell core transcriptome was interrogated using multiple methods including Ingenuity Pathway Analysis, the BioGPS gene expression database, principal component analysis, the Eurexpress gene expression atlas, and primary literature. Here we report that small numbers of fetal cells can be flow sorted from the maternal lung, facilitating discoverydriven gene expression analysis. We additionally show that gene expression data can provide functional information about fetal cells. Our results suggest that fetal cells in the murine maternal lung are a mixed population, consisting of trophoblasts, mesenchymal stem cells, and cells of the immune system. Detection of trophoblasts and immune cells in the maternal lung may facilitate future mechanistic studies related to the development of immune tolerance and pregnancy-related complications, such as pre-eclampsia. Furthermore, the presence and persistence of mesenchymal stem cells in maternal organs may have implications for long-term postpartum maternal health. © 2012 by the Society for the Study of Reproduction, Inc.
CITATION STYLE
Pritchard, S., Wick, H. C., Slonim, D. K., Johnson, K. L., & Bianchi, D. W. (2012). Comprehensive analysis of genes expressed by rare microchimeric fetal cells in the maternal mouse lung. Biology of Reproduction, 87(2). https://doi.org/10.1095/biolreprod.112.101147
Mendeley helps you to discover research relevant for your work.