This paper proposes a simplicity-oriented approach and framework for language-to-language transformation of, in particular, graphical languages. Key to simplicity is the decomposition of the transformation specification into sub-rule systems that separately specify purpose-specific aspects. We illustrate this approach by employing a variation of Plotkin’s Structural Operational Semantics (SOS) for pattern-based transformations of typed graphs in order to address the aspect ‘computation’ in a graph rewriting fashion. Key to our approach are two generalizations of Plotkin’s structural rules: the use of graph patterns as the matching concept in the rules, and the introduction of node and edge types. Types do not only allow one to easily distinguish between different kinds of dependencies, like control, data, and priority, but may also be used to define a hierarchical layering structure. The resulting Type-based Structural Operational Semantics (TSOS) supports a well-structured and intuitive specification and realization of semantically involved language-to-language transformations adequate for the generation of purpose-specific views or input formats for certain tools, like, e.g., model checkers. A comparison with the general-purpose transformation frameworks ATL and Groove, illustrates along the educational setting of our graphical WebStory language that TSOS provides quite a flexible format for the definition of a family of purpose-specific transformation languages that are easy to use and come with clear guarantees.
CITATION STYLE
Kopetzki, D., Lybecait, M., Naujokat, S., & Steffen, B. (2021). Towards language-to-language transformation. International Journal on Software Tools for Technology Transfer, 23(5), 655–677. https://doi.org/10.1007/s10009-021-00630-2
Mendeley helps you to discover research relevant for your work.