SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol

107Citations
Citations of this article
160Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report a fast, one-step, facile, and green preparation method that yields very stable and biocompatible silver colloids that are highly active as surface-enhanced Raman spectroscopy (SERS) platforms that has a possible application in biomedicine. Reduction of silver nitrate has been carried out using polyethylene glycol (PEG) which acts as both reducing agent and stabilizer. It turned out that the -OH groups provided by the addition of NaOH represent a key element in the successful synthesis of PEG-coated silver nanoparticles (AgNPs). The as-obtained silver colloids have been characterized by UV-visible spectroscopy, transmission electron spectroscopy, and SERS using 532- and 633-nm laser lines on a dispersive Raman spectrometer. Several analytes as methylene blue, p-aminothiophenol, amoxicillin, and Cu(PAR)2 were used to prove SERS enhancement of the obtained silver colloid. It has been found that the PEGylated AgNPs provide SERS signals comparable to those achieved using classical hydroxylamine and citrate-reduced silver colloids, thus demonstrating the ability of this new method to prepare biocompatible silver colloids. © 2013 Stiufiuc et al.; licensee Springer.

Cite

CITATION STYLE

APA

Stiufiuc, R., Iacovita, C., Lucaciu, C. M., Stiufiuc, G., Dutu, A. G., Braescu, C., & Leopold, N. (2013). SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Research Letters, 8(1), 1–5. https://doi.org/10.1186/1556-276X-8-47

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free