In the last few decades, photovoltaic (PV) power station installations have surged across the globe. The output efficiency of these stations deteriorates with the passage of time due to multiple factors such as hotspots, shaded cell or module, short-circuited bypass diodes, etc. Traditionally, technicians inspect each solar panel in a PV power station using infrared thermography to ensure consistent output efficiency. With the advancement of drone technology, researchers have proposed to use drones equipped with thermal cameras for PV power station monitoring. However, most of these drone-based approaches require technicians to manually control the drone which in itself is a cumbersome task in the case of large PV power stations. To tackle this issue, this study presents an autonomous drone-based solution. The drone is mounted with both RGB (Red, Green, Blue) and thermal cameras. The proposed system can automatically detect and estimate the exact location of faulty PV modules among hundreds or thousands of PV modules in the power station. In addition, we propose an automatic drone flight path planning algorithm which eliminates the requirement of manual drone control. The system also utilizes an image processing algorithm to process RGB and thermal images for fault detection. The system was evaluated on a 1-MW solar power plant located in Suncheon, South Korea. The experimental results demonstrate the effectiveness of our solution.
CITATION STYLE
Henry, C., Poudel, S., Lee, S. W., & Jeong, H. (2020). Automatic detection system of deteriorated PV modules using drone with thermal camera. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10113802
Mendeley helps you to discover research relevant for your work.