Although post-translational modification of the C-terminus of RAS has been studied extensively, little is known about N-terminal processing. Mass spectrometric characterization of KRAS expressed in mammalian cells showed cleavage of the initiator methionine (iMet) and N-acetylation of the nascent N-terminus. Interestingly, structural studies on GDP- and GMPPNP-bound KRAS lacking the iMet and N-acetylation resulted in Mg2+-free structures of KRAS with flexible N-termini. In the Mg2+-free KRAS-GDP structure, the flexible N-terminus causes conformational changes in the interswitch region resulting in a fully open conformation of switch I. In the Mg2+-free KRAS-GMPPNP structure, the flexible N-terminus causes conformational changes around residue A59 resulting in the loss of Mg2+ and switch I in the inactive state 1 conformation. Structural studies on N-acetylated KRAS-GDP lacking the iMet revealed the presence of Mg2+ and a conformation of switch regions also observed in the structure of GDP-bound unprocessed KRAS with the iMet. In the absence of the iMet, the N-acetyl group interacts with the central beta-sheet and stabilizes the N-terminus and the switch regions. These results suggest there is crosstalk between the N-terminus and the Mg2+ binding site, and that N-acetylation plays an important role by stabilizing the N-terminus of RAS upon excision of the iMet.
CITATION STYLE
Dharmaiah, S., Tran, T. H., Messing, S., Agamasu, C., Gillette, W. K., Yan, W., … Simanshu, D. K. (2019). Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46846-w
Mendeley helps you to discover research relevant for your work.