Enhancing oral squamous cell carcinoma detection: a novel approach using improved EfficientNet architecture

6Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Problem: Oral squamous cell carcinoma (OSCC) is the eighth most prevalent cancer globally, leading to the loss of structural integrity within the oral cavity layers and membranes. Despite its high prevalence, early diagnosis is crucial for effective treatment. Aim: This study aimed to utilize recent advancements in deep learning for medical image classification to automate the early diagnosis of oral histopathology images, thereby facilitating prompt and accurate detection of oral cancer. Methods: A deep learning convolutional neural network (CNN) model categorizes benign and malignant oral biopsy histopathological images. By leveraging 17 pretrained DL-CNN models, a two-step statistical analysis identified the pretrained EfficientNetB0 model as the most superior. Further enhancement of EfficientNetB0 was achieved by incorporating a dual attention network (DAN) into the model architecture. Results: The improved EfficientNetB0 model demonstrated impressive performance metrics, including an accuracy of 91.1%, sensitivity of 92.2%, specificity of 91.0%, precision of 91.3%, false-positive rate (FPR) of 1.12%, F1 score of 92.3%, Matthews correlation coefficient (MCC) of 90.1%, kappa of 88.8%, and computational time of 66.41%. Notably, this model surpasses the performance of state-of-the-art approaches in the field. Conclusion: Integrating deep learning techniques, specifically the enhanced EfficientNetB0 model with DAN, shows promising results for the automated early diagnosis of oral cancer through oral histopathology image analysis. This advancement has significant potential for improving the efficacy of oral cancer treatment strategies.

Cite

CITATION STYLE

APA

Soni, A., Sethy, P. K., Dewangan, A. K., Nanthaamornphong, A., Behera, S. K., & Devi, B. (2024). Enhancing oral squamous cell carcinoma detection: a novel approach using improved EfficientNet architecture. BMC Oral Health, 24(1). https://doi.org/10.1186/s12903-024-04307-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free