The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 m diameter capillaries to 3cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) image processing libraries. © 2011 Oleksandr P. Dzyubak and Erik L. Ritman.
CITATION STYLE
Ritman, E. L., & Dzyubak, O. P. (2011). Automation of Hessian-based tubularity measure response function in 3d biomedical images. International Journal of Biomedical Imaging, 2011. https://doi.org/10.1155/2011/920401
Mendeley helps you to discover research relevant for your work.