The effects of Alkyl chain combinations on the structural and mechanical properties of biomimetic ion pair amphiphile bilayers

8Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Ion pair amphiphile (IPA), a lipid-like complex composed of a pair of cationic and anionic surfactants, has great potentials in various pharmaceutical applications. In this work, we utilized molecular dynamics (MD) simulation to systematically examine the structural and mechanical properties of the biomimetic bilayers consist of alkyltrimethyl-ammonium-alkylsulfate (C m TMA + -C n S − ) IPAs with various alkyl chain combinations. Our simulations show an intrinsic one-atom offset for the C m TMA + and C n S − alignment, leading to the asymmetric index definition of ∆C = m − (n + 1). Larger |∆C| gives rise to higher conformational fluctuations of the alkyl chains with the reduced packing order and mechanical strength. In contrast, increasing the IPA chain length enhances the van der Waals interactions within the bilayer and thus improves the bilayer packing order and mechanical properties. Further elongating the C m TMA + -C n S − alkyl chains to m and n ≥ 12 causes the liquid disorder to gel phase transition of the bilayer at 298 K, with the threshold membrane properties of 0.45 nm 2 molecular area, deuterium order parameter value of 0.31, and effective bending rigidity of 20 k B T, etc. The combined results provide molecular insights into the design of biomimetic IPA bilayers with wide structural and mechanical characteristics for various applications.

Cite

CITATION STYLE

APA

Chen, C. H., Tian, C. A., & Chiu, C. C. (2017). The effects of Alkyl chain combinations on the structural and mechanical properties of biomimetic ion pair amphiphile bilayers. Bioengineering, 4(4). https://doi.org/10.3390/bioengineering4040084

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free