The properties of a mouse liver copper binding protein (CuBP) and human placental S-adenosylhomocysteine hydrolase (SAHH) were compared to test the hypothesis that CuBP is SAHH. CuBP and SAHH migrated identically on SDS-polyacrylamide gel electrophoresis gels, and their 48-kDa monomers both self-associate to tetramers. Human placental SAHH cross-reacted with polyclonal antibodies to mouse liver CuBP, and CuBP from mouse liver cross-reacted with two monoclonal antibodies to human placental SAHH. A third monoclonal antibody to human placenta SAHH reacted weakly with the mouse liver protein but well with CuBP from human lymphoblasts. NAD+-activated CuBP has high SAHH enzymatic activity. Moreover, human placental SAHH, like mouse liver CuBP, has a single high affinity copper binding site per 48-kDa subunit. Thus, the data confirm that CuBP is SAHH, and SAHH is proposed to be a bifunctional protein with roles in sulfur-amino acid metabolism and copper metabolism. The copper binding activity of SAHH is proposed to play a significant role in the intracellular distribution of copper, and SAHH enzymatic activity may influence copper metabolism through its role in cysteine biosynthesis from methionine.
CITATION STYLE
Bethin, K. E., Petrovic, N., & Ettinger, M. J. (1995). Identification of a major hepatic copper binding protein as S-adenosylhomocysteine hydrolase. Journal of Biological Chemistry, 270(35), 20698–20702. https://doi.org/10.1074/jbc.270.35.20698
Mendeley helps you to discover research relevant for your work.