Learning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task. By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz data set. High classification rates demonstrate the superiority of the proposed system.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Montoya-Zegarra, J. A., Papa, J. P., Leite, N. J., Da Silva Torres, R., & Falc̃o, A. X. (2008). Learning how to extract rotation-invariant and scale-invariant features from texture images. Eurasip Journal on Advances in Signal Processing, 2008. https://doi.org/10.1155/2008/691924