Reversible switching of arylazopyrazole within a metal-organic cage

37Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

Arylazopyrazoles represent a new family of molecular photoswitches characterized by a near-quantitative conversion between two states and long thermal half-lives of the metastable state. Here, we investigated the behavior of a model arylazopyrazole in the presence of a self-assembled cage based on Pd-imidazole coordination. Owing to its high water solubility, the cage can solubilize the E isomer of arylazopyrazole, which, by itself, is not soluble in water. NMR spectroscopy and X-ray crystallography have independently demonstrated that each cage can encapsulate two molecules of E-arylazopyrazole. UV-induced switching to the Z isomer was accompanied by the release of one of the two guests from the cage and the formation of a 1:1 cage/Z-arylazopyrazole inclusion complex. DFT calculations suggest that this process involves a dramatic change in the conformation of the cage. Back-isomerization was induced with green light and resulted in the initial 1:2 cage/E-arylazopyrazole complex. This back-isomerization reaction also proceeded in the dark, with a rate significantly higher than in the absence of the cage.

Cite

CITATION STYLE

APA

Hanopolskyi, A. I., De, S., Białek, M. J., Diskin-Posner, Y., Avram, L., Feller, M., & Klajn, R. (2019). Reversible switching of arylazopyrazole within a metal-organic cage. Beilstein Journal of Organic Chemistry, 15, 2398–2407. https://doi.org/10.3762/bjoc.15.232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free