Dynamic programming algorithms for two statistical problems in computational biology

21Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present dynamic programming algorithms for two exact statistical tests that frequently arise in computational biology. The first test concerns the decision whether an observed sequence stems from a given profile (also known as position specific score matrix or position weight matrix), or from an assumed background distribution. We show that the common assumption that the log-odds score has a Gaussian distribution is false for many short profiles, such as transcription factor binding sites or splice sites. We present an efficient implementation of a non-parametric method (first mentioned by Staden) to compute the exact score distribution. The second test concerns the decision whether observed category counts stem from a specified Multinomial distribution. A branch-and-bound method for computing exact p-values for this test was presented by Bejerano at a recent RECOMB conference. Our contribution is a dynamic programming approach to compute the entire distribution of the test statistic, allowing not only the computation of exact p-values for all values of the test statistic simultaneously, but also of the power function of the test. As one of several applications, we introduce p-value based sequence logos, which provide a more meaningful visual description of probabilistic sequences than conventional sequence logos do. © Springer-Verlag Berlin Heidelberg 2003.

Cite

CITATION STYLE

APA

Rahmann, S. (2003). Dynamic programming algorithms for two statistical problems in computational biology. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2812, 151–164. https://doi.org/10.1007/978-3-540-39763-2_12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free