Joint myocardial registration and segmentation of cardiac BOLD MRI

Citations of this article
Mendeley users who have this article in their library.
Get full text


Registration and segmentation of anatomical structures are two well studied problems in medical imaging. Optimizing segmentation and registration jointly has been proven to improve results for both challenges. In this work, we propose a joint optimization scheme for registration and segmentation using dictionary learning based descriptors. Our joint registration and segmentation aims to solve an optimization function, which enables better performance for both of these ill-posed processes. We build two dictionaries for background and myocardium for square patches extracted from training images. Based on dictionary learning residuals and sparse representations defined on these pre-trained dictionaries, a Markov Random Field (MRF) based joint optimization scheme is built. The algorithm proceeds iteratively updating the dictionaries in an online fashion. The accuracy of the proposed method is illustrated on Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI and standard cine Cardiac MRI data from MICCAI 2013 SATA Segmentation Challenge. The proposed joint segmentation and registration method achieves higher dice accuracy for myocardium segmentation compared to its variants.




Oksuz, I., Dharmakumar, R., & Tsaftaris, S. A. (2018). Joint myocardial registration and segmentation of cardiac BOLD MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10663 LNCS, pp. 12–20). Springer Verlag.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free