Analysis and correction of compositional bias in sparse sequencing count data

53Citations
Citations of this article
168Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Count data derived from high-throughput deoxy-ribonucliec acid (DNA) sequencing is frequently used in quantitative molecular assays. Due to properties inherent to the sequencing process, unnormalized count data is compositional, measuring relative and not absolute abundances of the assayed features. This compositional bias confounds inference of absolute abundances. Commonly used count data normalization approaches like library size scaling/rarefaction/subsampling cannot correct for compositional or any other relevant technical bias that is uncorrelated with library size. Results: We demonstrate that existing techniques for estimating compositional bias fail with sparse metagenomic 16S count data and propose an empirical Bayes normalization approach to overcome this problem. In addition, we clarify the assumptions underlying frequently used scaling normalization methods in light of compositional bias, including scaling methods that were not designed directly to address it. Conclusions: Compositional bias, induced by the sequencing machine, confounds inferences of absolute abundances. We present a normalization technique for compositional bias correction in sparse sequencing count data, and demonstrate its improved performance in metagenomic 16s survey data. Based on the distribution of technical bias estimates arising from several publicly available large scale 16s count datasets, we argue that detailed experiments specifically addressing the influence of compositional bias in metagenomics are needed.

Cite

CITATION STYLE

APA

Kumar, M. S., Slud, E. V., Okrah, K., Hicks, S. C., Hannenhalli, S., & Corrada Bravo, H. (2018). Analysis and correction of compositional bias in sparse sequencing count data. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-5160-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free