Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates

47Citations
Citations of this article
138Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Klebsiella pneumoniae is a frequent nosocomial pathogen, with the multidrug-resistant (MDR) K. pneumoniae being a major public health concern, frequently causing difficult-to-treat infections worldwide. The aim of this study was to investigate the molecular characterization of clinical MDR Klebsiella pneumoniae isolates.Methods: A total of 27 non-duplicate MDR K. pneumoniae isolates with a CTX-CIP-AK resistance pattern were investigated for the prevalence of antimicrobial resistance genes including extended spectrum β-lactamase genes (ESBLs), plasmid-mediated quinolone resistance (PMQR) genes, 16S rRNA methylase (16S-RMTase) genes, and integrons by polymerase chain reaction (PCR) amplification and DNA sequencing. Plasmid replicons were typed by PCR-based replicon typing (PBRT). Multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were carried out to characterize the strain relatedness.Results: All the isolates co-harbored 3 or more resistance determinants. OqxAB, CTX-M-type ESBLs and RmtB were the most frequent determinants, distributed among19 (70.4%),18 (66.7%) and 8 (29.6%) strains. Fourteen isolates harbored class 1 integrons, with orfD-aacA4 being the most frequent gene cassette array. Class 3 integrons were less frequently identified and contained the gene cassette array of bla GES-1-bla OXA-10-aac(6′)-Ib. IncFII replicon was most commonly found in this collection. One cluster was observed with ≥80% similarity among profiles obtained by PFGE, and one sequence type (ST) by MLST, namely ST11, was observed in the cluster.Conclusion: K. pneumoniae carbapenemase (KPC)-producing ST11 was the main clone detected. Of particular concern was the high prevalence of multiple resistance determinants, classs I integrons and IncFII plasmid replicon among these MDR strains, which provide advantages for the rapid development of MDR strains. © 2014 Cao et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Cao, X., Xu, X., Zhang, Z., Shen, H., Chen, J., & Zhang, K. (2014). Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates. Annals of Clinical Microbiology and Antimicrobials, 13(1). https://doi.org/10.1186/1476-0711-13-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free