Peritoneal dialysis (PD) is one therapeutic option for patients with end-stage kidney disease (ESKD). Molecular profiling of samples from PD patients using different Omics technologies has led to the discovery of dysregulated molecular processes due to PD treatment in recent years. In particular, a number of transcriptomics (TX) datasets are currently available in the public domain in the context of PD. We set out to perform a meta-analysis of TX datasets to identify dysregulated receptor-ligand interactions in the context of PD-associated complications. We consolidated transcriptomics profiles from twelve untargeted genome-wide gene expression studies focusing on human cell cultures or samples from human PD patients. Gene set enrichment analysis was used to identify enriched biological processes. Receptor-ligand interactions were identified using data from CellPhoneDB. We identified 2591 unique differentially expressed genes in the twelve PD studies. Key enriched biological processes included angiogenesis, cell adhesion, extracellular matrix organization, and inflammatory response. We identified 70 receptor-ligand interaction pairs, with both interaction partners being dysregulated on the transcriptional level in one of the investigated tissues in the context of PD. Novel receptor-ligand interactions without prior annotation in the context of PD included BMPR2-GDF6, FZD4-WNT7B, ACKR2-CCL2, or the binding of EPGN and EREG to the EGFR, as well as the binding of SEMA6D to the receptors KDR and TYROBP. In summary, we have consolidated human transcriptomics datasets from twelve studies in the context of PD and identified sets of novel receptor-ligand pairs being dysregulated in the context of PD that warrant investigation in future functional studies.
CITATION STYLE
Evgeniou, M., Sacnun, J. M., Kratochwill, K., & Perco, P. (2021). A meta-analysis of human transcriptomics data in the context of peritoneal dialysis identifies novel receptor-ligand interactions as potential therapeutic targets. International Journal of Molecular Sciences, 22(24). https://doi.org/10.3390/ijms222413277
Mendeley helps you to discover research relevant for your work.