In this work, we report a sol-gel synthesis-based Zn-doped Na0.6Fe0.5Mn0.5O2 (NFM) cathode and understand the effect of Zn doping on the crystal structure and electrochemical performances such as discharge capacity and rate capability. Detailed X-Ray diffraction (XRD) pattern analysis indicated a decrease in the Na-layer thickness with Zn doping. Small amount of Zn2+ dopant (i.e., 2 at.%) slightly improved cycling stability, reversibility, and rate performances at higher discharge current rates. For example, at 1 C-rate (1 C = 260 mAh/g), the Zn2+-doped cathode retained a stable reversible capacity of 72 mAh/g, which was ~16% greater than that of NFM (62 mAh/g) and showed a minor improvement in the capacity retention of 60% compared to 55% for the pristine NFM after 65 cycles. Slight improvement in the electrochemical performance for the Zn-doped cathode can be attributed to a better structural stability, which prevented the initial phase transition and showed the presence of electrochemical active Fe3+/4+ even after 10 cycles compared to NFM.
CITATION STYLE
Darbar, D., Reddy, M. V., & Bhattacharya, I. (2021). Understanding the Effect of Zn Doping on Stability of Cobalt-Free P2-Na0.60Fe0.5Mn0.5O2 Cathode for Sodium Ion Batteries. Electrochem, 2(2), 323–334. https://doi.org/10.3390/electrochem2020023
Mendeley helps you to discover research relevant for your work.