We report the discovery of a possible accretion stream toward a Milky Way–type galaxy M106 based on very deep H i imaging data with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The accretion stream extends for about 130 kpc in projection length and it is similar to the Magellanic stream in many respects. We provide unambiguous evidence based on the stream morphology, kinematics and local star formation activity to show that the H i gas is being accreted onto the disk of M106. Such a long continuous flow of gas provides a unique opportunity to probe the circumgalactic medium (CGM) and reveals how the gas stream traverses the hot halo and CGM, and eventually reaches the galaxy disk. The source of the stream appears to be from M106's satellite galaxy NGC 4288. We argue that the stream of gas could be due to the tidal interaction with NGC 4288, or with a high speed encounter near this system. Close to the position of UGC 7356 the stream bifurcates into two streams. The second stream may be gas tidally stripped from UGC 7356 or due to an interaction with UGC 7356. Our results show that high-sensitivity H i imaging is crucial in revealing low column density accretion features in nearby galaxies.
CITATION STYLE
Zhu, M., Yu, H., Wang, J., Xu, J.-L., Du, W., Yuan, L., … Jiang, P. (2021). FAST Discovery of a Long H i Accretion Stream toward M106. The Astrophysical Journal Letters, 922(1), L21. https://doi.org/10.3847/2041-8213/ac350a
Mendeley helps you to discover research relevant for your work.