Use of biocarrier beads and flow cytometry for single-cell studies of fibronectin gene regulation in dibutyrl cyclic AMP reverse transformed CHO-K1 cells

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The protease sensitivity of a number of cell surface or cytoskeletal components and the relationship of these to the substratum in attached cells has prevented the quantitative measurement of their expression by flow cytometry. Using traditional cell sorting techniques, cells must be treated with a protease to detach them from a substrate in order to produce a single-cell suspension. Unfortunately, proteolytic treatment alters or destroys a number of cellular proteins. Fibronectin either on the cell surface or as part of the substratum laid down by the cell is particularly sensitive to proteases, preventing its quantitative study by flow cytometry. To circumvent these problems and produce a single cell suspension necessary for flow cytometric analysis, CHO-K1, a Chinese hamster ovary cell line, were grown in suspension on specially-treated 25 μm biocarrier beads. The CHO-K1 cell line is composed of transformed epithelial-like cells that have lost the fibronectin deposit around their cell membranes. To restore the typical fibroblastic deposit of fibronectin, the cells attached to beads were induced by dibutyrl cAMP to undergo a reverse transformation reaction to restore fibroblastic morphology and the typical fibroblastic deposite of fibronectin on the cell surface and substratum. The cells attached to beads were then immunofluorescently labeled for the protease-sensitive, extracellular matrix component, fibronectin, and examined on a flow cytometer. Cell surface fibronectin heterogeneity was then examined on a cell-by-cell basis as a function of cell cycle using Hoechst 33342 dye that binds to AT base pairs of cellular DNA. Dual laser measurement and multiparameter list mode data analysis were used to study the relationship between cell surface fibronectin of biocarrier bead attached cells and cell cycle. © 1989, Humana Press Inc.. All rights reserved.

Cite

CITATION STYLE

APA

Sterner, J. M., & Leary, J. F. (1989). Use of biocarrier beads and flow cytometry for single-cell studies of fibronectin gene regulation in dibutyrl cyclic AMP reverse transformed CHO-K1 cells. Cell Biophysics, 15(3), 159–171. https://doi.org/10.1007/BF02989681

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free