KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-κB binding to the promoter as a consequence of IκBα-induced block of p65/p50 nuclear translocation

193Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The 92-kDa type IV collagenase (MMP-9) plays a critical role in tissue remodeling. We undertook a study to determine whether the KiSS-1 gene, previously shown to suppress cancer spread (metastases), negatively regulates MMP-9 expression. Six cell lines positive for MMP-9 mRNA were deficient in KiSS-1 mRNA. One of these cell lines, HT-1080, stably transfected with a KiSS-1 expression construct, demonstrated substantially lower MMP-9 enzyme activity/protein and in vitro invasiveness. The lower MMP-9 enzyme activity reflected reduced steady-state mRNA levels which, in turn, was due to attenuated transcription. Activation of ERKs and JNKs by phorbol 12-myristate 18-acetate and tumor necrosis factor α, respectively, leading to increased MMP-9 amounts was not antagonized by KiSS-1 expression, suggesting that MAPK pathways modulating MMP-9 synthesis are not the target of KiSS-1. Although MMP-9 expression is regulated by AP-1, Sp1, and Ets transcription factors, KiSS-1 did not alter the binding of these factors to the MMP-9 promoter. However, NF-κB binding to the MMP-9 promoter required for expression of this collagenase was reduced by KiSS-1 expression. Diminished NF-κB binding reflected less p50/p65 in the nucleus secondary to increased IκBα levels in the cytosols of the KiSS-1 transfectants. Thus, KiSS-1 diminishes MMP-9 expression by effecting reduced NF-κB binding to the promoter.

Cite

CITATION STYLE

APA

Yan, C., Wang, H., & Boyd, D. D. (2001). KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-κB binding to the promoter as a consequence of IκBα-induced block of p65/p50 nuclear translocation. Journal of Biological Chemistry, 276(2), 1164–1172. https://doi.org/10.1074/jbc.M008681200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free