Evidence for percolation diffusion of cations and reordering in disordered pyrochlore from accelerated molecular dynamics

26Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd2Ti2O7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivity is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.

Cite

CITATION STYLE

APA

Perriot, R., Uberuaga, B. P., Zamora, R. J., Perez, D., & Voter, A. F. (2017). Evidence for percolation diffusion of cations and reordering in disordered pyrochlore from accelerated molecular dynamics. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00708-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free