Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator

  • Dong J
  • Bi R
  • Ho J
  • et al.
66Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Abstract.  Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique that probes the deep tissue blood flow, by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal. We present a fast Fourier transform (FFT)-based software autocorrelator that utilizes the graphical programming language LabVIEW (National Instruments) to complete data acquisition, recording, and processing tasks. The validation and evaluation experiments were conducted on an in-house flow phantom, human forearm, and photodynamic therapy (PDT) on mouse tumors under the acquisition rate of ∼400  kHz. The software autocorrelator in general has certain advantages, such as flexibility in raw photon count data preprocessing and low cost. In addition to that, our FFT-based software autocorrelator offers smoother starting and ending plateaus when compared to a hardware correlator, which could directly benefit the fitting results without too much sacrifice in speed. We show that the blood flow index (BFI) obtained by using a software autocorrelator exhibits better linear behavior in a phantom control experiment when compared to a hardware one. The results indicate that an FFT-based software autocorrelator can be an alternative solution to the conventional hardware ones in DCS systems with considerable benefits.

Cite

CITATION STYLE

APA

Dong, J., Bi, R., Ho, J. H., Thong, P. S. P., Soo, K.-C., & Lee, K. (2012). Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator. Journal of Biomedical Optics, 17(9), 0970041. https://doi.org/10.1117/1.jbo.17.9.097004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free