Interindividual variability in response to sodium dichromate-induced oxidative DNA damage: Role of the Ser326Cys polymorphism in the DNA-repair protein of 8-oxo-7,8-dihydro-2′-deoxyguanosine DNA glycosylase 1

83Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Although the genotoxic mechanism(s) of hexavalent chromium (CrVI) carcinogenicity remain to be fully elucidated, intracellular reduction of CrVI and concomitant generation of reactive intermediates including reactive oxygen species and subsequent oxidative damage to DNA is believed to contribute to the process of carcinogenesis. In the current study, substantial interindividual variation (7.19-25.84% and 8.79-34.72% tail DNA as assessed by conventional and FPG-modified comet assay, respectively) in levels of DNA strand breaks after in vitro treatment of WBC with sodium dichromate (100 μmol/L, 1 hour) was shown within a group of healthy adult volunteers (n = 72) as assessed by both comet and formamidopyrimidine glycosylase-modified comet assays. No statistically significant correlation between glutathione S-transferases M1 or T1, NADPH quinone oxidoreductase 1 (codon 187) and X-ray repair cross complementation factor 1 (codon 194) genotypes and individual levels of DNA damage were observed. However, individuals homozygous for the Cys326 8-oxo 7,8-dihydro-2′-deoxyguanosine glycosylase 1 (OGG1) polymorphism had a statistically significant elevation of formamidopyrimidine glycosylase-dependent oxidative DNA damage after treatment with sodium dichromate when compared with either Ser326/Ser326 or Ser326/Cys 326 individuals (P = 0.008 and P = 0.003, respectively). In contrast, no effect of OGG1 genotype on background levels of oxidative DNA damage was observed. When individuals were divided on the basis of OGG1 genotype, Cys 326/Cys326 individuals had a statistically significant (P < 0.05, one-way ANOVA followed by Tukey test) higher ratio of oxidative DNA damage to plasma antioxidant capacity than either Ser326/Ser 326 or Ser326/Cys326 individuals. The results of this study suggest that the Cys326/Cys326 OGG1 genotype may represent a phenotype that is deficient in the repair of 8-oxo-7,8-dihydro-2′-deoxyguanosine, but only under conditions of cellular oxidative stress. We hypothesize that this may be due to oxidation of the Cys326 residue. In conclusion, the homozygous Cys326 genotype may represent a biomarker of individual susceptibility of lung cancer risk in individuals that are occupationally exposed to CrVI.

Cite

CITATION STYLE

APA

Lee, A. J., Hodges, N. J., & Chipman, J. K. (2005). Interindividual variability in response to sodium dichromate-induced oxidative DNA damage: Role of the Ser326Cys polymorphism in the DNA-repair protein of 8-oxo-7,8-dihydro-2′-deoxyguanosine DNA glycosylase 1. Cancer Epidemiology Biomarkers and Prevention, 14(2), 497–505. https://doi.org/10.1158/1055-9965.EPI-04-0295

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free