Snai1 is important for avian epicardial cell transformation and motility

12Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Formation of the epicardium requires several cellular processes including migration, transformation, invasion, and differentiation in order to give rise to fibroblast, smooth muscle, coronary endothelial and myocyte cell lineages within the developing myocardium. Snai1 is a zinc finger transcription factor that plays an important role in regulating cell survival and fate during embryonic development and under pathological conditions. However, its role in avian epicardial development has not been examined. Results: Here we show that Snai1 is highly expressed in epicardial cells from as early as the proepicardial cell stage and its expression is maintained as proepicardial cells migrate and spread over the surface of the myocardium and undergo epicardial-to-mesenchymal transformation in the generation of epicardial-derived cells. Using multiple in vitro assays, we show that Snai1 overexpression in chick explants enhances proepicardial cell migration at Hamburger Hamilton Stage (HH St.) 16, and epicardial-to-mesenchymal transformation, cell migration, and invasion at HH St. 24. Further, we demonstrate that Snai1-mediated cell migration requires matrix metalloproteinase activity, and MMP15 is sufficient for this process. Conclusions: Together our data provide new insights into the multiple roles that Snai1 has in regulating avian epicardial development. Developmental Dynamics 242:699-708, 2013. © 2013 Wiley Periodicals, Inc..

Author supplied keywords

Cite

CITATION STYLE

APA

Tao, G., Miller, L. J., & Lincoln, J. (2013). Snai1 is important for avian epicardial cell transformation and motility. Developmental Dynamics, 242(6), 699–708. https://doi.org/10.1002/dvdy.23967

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free