Production of radiometals in liquid targets

34Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Over the last several years, the use of radiometals has gained increasing relevance in supporting the continuous development of new, complementary and more specific biological targeting agents. Radiopharmaceuticals labelled with radiometals from elements such as Tc, Zr, Y, Ga and Cu received increasing attention as they find application in both diagnostic SPECT and PET imaging techniques and radiotherapeutic purposes. Such interest stems from the wide variety of radionuclides available with distinct and complementary nuclear decay characteristics to choose from with unequalled specificity, but can also be explained by growing demand in targeted radionuclide therapy. As a result, as routine supply of these radiometals becomes mandatory, studies describing their production processes have expanded rapidly. Although most radiometals are traditionally provided by the irradiation of solid targets in specialized cyclotrons, recently developed techniques for producing radiometals through the irradiation of liquid targets have received growing attention due to compatibility with commonly available small medical cyclotrons, promising characteristics and encouraging results. Irradiating liquid targets to produce radiometals appears as a fast, reliable, convenient and cost-efficient alternative to the conventional solid target techniques, characterized by complex and time-consuming pre- and post-irradiation target handling. Production of radiometals in liquid targets incorporated to complete manufacturing processes for daily routine is already recognized as a viable alternative and complementary supply methodology to existing solid target based infrastructures to satisfy growing clinical demands. For instance, several sites already use the approach to produce 68Ga-radiopharmaceuticals for clinical use. This review article covers the production of common radiometals with clinical potential through the irradiation liquid targets. A comparison with the traditional solid target irradiation methods is presented when relevant.

Cite

CITATION STYLE

APA

do Carmo, S. J. C., Scott, P. J. H., & Alves, F. (2020, December 1). Production of radiometals in liquid targets. EJNMMI Radiopharmacy and Chemistry. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s41181-019-0088-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free