The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications

106Citations
Citations of this article
196Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992–2010 period, which has been attributed to the effects of rising atmospheric CO2 concentrations on plant physiology. To test this hypothesis, we forced the observed trend in the process-based land surface model JSBACH by increasing the sensitivity of stomatal conductance (gs) to atmospheric CO2 concentration. We compared the simulated continental discharge, evapotranspiration (ET), and the seasonal CO2 exchange with observations across the extratropical northern hemisphere. The increased simulated WUE led to substantial changes in surface hydrology at the continental scale, including a significant decrease in ET and a significant increase in continental runoff, both of which are inconsistent with large-scale observations. The simulated seasonal amplitude of atmospheric CO2 decreased over time, in contrast to the observed upward trend across ground-based measurement sites. Our results provide strong indications that the recent, large-scale WUE trend is considerably smaller than that estimated for these forest ecosystems. They emphasize the decreasing CO2 sensitivity of WUE with increasing scale, which affects the physiological interpretation of changes in ecosystem WUE.

Cite

CITATION STYLE

APA

Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B. E., Forkel, M., Hagemann, S., & Werner, C. (2017). The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications. New Phytologist, 213(4), 1654–1666. https://doi.org/10.1111/nph.14288

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free