The subtype diagnosis and severity classification of mood disorder have been made through the judgment of verified assistance tools and psychiatrists. Recently, however, many studies have been conducted using biomarker data collected from subjects to assist in diagnosis, and most studies use heart rate variability (HRV) data collected to understand the balance of the autonomic nervous system on statistical analysis methods to perform classification through statistical analysis. In this research, three mood disorder severity or subtype classification algorithms are presented through multimodal analysis of data on the collected heart-related data variables and hidden features from the variables of time and frequency domain of HRV. Comparing the classification performance of the statistical analysis widely used in existing major depressive disorder (MDD), anxiety disorder (AD), and bipolar disorder (BD) classification studies and the multimodality deep neural network analysis newly proposed in this study, it was confirmed that the severity or subtype classification accuracy performance of each disease improved by 0.118, 0.231, and 0.125 on average. Through the study, it was confirmed that deep learning analysis of biomarker data such as HRV can be applied as a primary identification and diagnosis aid for mental diseases, and that it can help to objectively diagnose psychiatrists in that it can confirm not only the diagnosed disease but also the current mood status.
CITATION STYLE
Yoo, J. H., Jeong, H., An, J. H., & Chung, T. M. (2024). Mood Disorder Severity and Subtype Classification Using Multimodal Deep Neural Network Models. Sensors, 24(2). https://doi.org/10.3390/s24020715
Mendeley helps you to discover research relevant for your work.