We characterized small-scale movement patterns and habitat of acoustic-tagged adult (68 to 220 cm total length) female Pacific halibut during summer and fall in Glacier Bay National Park, Alaska, a marine protected area (MPA). We used net squared displacement analysis methods to identify 2 movement states, characterize individual dispersal patterns, and relate habitat variables to movement scales. Movement states identified for 32 of 43 halibut consisted of (1) a non-dispersive 'residential' movement state (n = 27 fish), where movement was restricted to an average movement radius of 401.3 m (95% CI 312.2-515.9 m) over a median observation period of 58 d, and (2) a 'dispersive' movement state (n = 15 fish), where movements of up to 18 km occurred over a median observation period of 27 d. Some fish (n = 10) exhibited both movement states. Individual fish demonstrated primarily non-random dispersal patterns including home range (n = 17), site fidelity (return to previously occupied locations following forays, n = 6), and shifted home ranges (n = 5). However, we also observed a random dispersal pattern (n = 4) with an estimated mean ± SE diffusion rate of 0.9 ± 0.05 km2 d-1. Home range size increased with depth but not fish size. Home range locations were associated with heterogeneous habitat, intermediate tidal velocities, and depths <100 m. Observations of non-dispersive movement patterns, relatively small home ranges, and site fidelity for adult females suggest that MPAs such as Glacier Bay may have utility for conservation of Pacific halibut broodstock.
CITATION STYLE
Nielsen, J. K., Hooge, P. N., Taggart, S. J., & Seitz, A. C. (2014). Characterizing pacific halibut movement and habitat in a marine protected area using net squared displacement analysis methods. Marine Ecology Progress Series, 517, 229–250. https://doi.org/10.3354/meps11043
Mendeley helps you to discover research relevant for your work.