Polyphenol Content, Physicochemical Properties, Enzymatic Activity, Anthocyanin Profiles, and Antioxidant Capacity of Cerasus humilis (Bge.) Sok. Genotypes

13Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Seven varieties of Chinese dwarf cherries were evaluated and compared with respect to their weight, diameter, titratable acidity, total soluble solids, color, polyphenol contents, ascorbic acid levels, anthocyanin profiles, enzymatic activity, and antioxidant capacity. The fruits are rich in phenolic content (339.07-770.30 mg/100 g fresh weight). Nine anthocyanins were obtained from fruits after chromatographic separation and their structures analyzed using HPLC-ESI-MS/MS. Cyanidin-3-glucoside was the major anthocyanin with 50.36-78.39% concentration. Three anthocyanins were reported for the first time in these cherries. They exhibit low polyphenol oxidase and peroxidase activities, but their superoxide dismutase activity is high (572.75-800.17 U/g FW). The highest amounts of soluble solid content (15.67 Brix %), total titratable acid (1.90%), ascorbic acid (18.47 mg/100 g FW), and total anthocyanin (152.66 mg/100 g FW) were observed. Three methods (DPPH-scavenging ability, oxygen radical absorbance capacity assay, and cellular antioxidant activity assay) were employed to evaluate the antioxidant capacity of the phenolic extracts of these cherries. Number 5 has the highest values of ORAC and CAA of 205.68 μmol TE/g DM and 99.67 μmol QE/100 g FW, respectively.

Cite

CITATION STYLE

APA

Liu, S., Li, X., Guo, Z., Zhang, X., & Chang, X. (2018). Polyphenol Content, Physicochemical Properties, Enzymatic Activity, Anthocyanin Profiles, and Antioxidant Capacity of Cerasus humilis (Bge.) Sok. Genotypes. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/5479565

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free