The palaeontology of the Saiwan Formation (Lower Permian) of the Al-Huqf outcrop area, Central Oman, has been the subject of significant study, but that of approximately equivalent beds in the subsurface (the Haushi limestone and 'basal sandstones' of the lower Gharif member) has been unknown until now. This has meant that the precise relationship between the surface and subsurface units has been poorly understood. A new subsurface brachiopod study has allowed a fourfold biozonation that correlates the surface Saiwan Formation with the subsurface Haushi limestone, implying that previous direct correlation of the Saiwan Formation with the lower Gharif member is not correct. Overall the brachiopod fauna of the subsurface is of lower diversity than that of the outcropping Saiwan Formation, suggesting deposition in quieter and deeper marine settings. The occurrence of a fusulinid assemblage with Pseudofusulina ex gr. karapetovi karapetovi Leven, the first such record in Gondwana, suggests a Sakmarian age for the Haushi limestone, and brachiopod data supports this determination. Subsurface Haushi limestone palynological assemblages, though diverse, are poorly preserved, and no palynomorphs have been recovered from equivalent surface outcrops. However, the distribution of autochthonous algal spores in three of the subsurface Haushi limestone sections suggest a local biozonation that is consistent with that indicated by brachiopods, while the terrestrially-sourced palynomorphs in the subsurface Haushi limestone sections indicate an OSPZ3c age. Surprisingly the sections contain no palynomorphs of unequivoval marine origin. Fusulinids indicate that a Sakmarian age for OSPZ3c is more likely than the Artinskian age suggested by previous palynological studies. The terrestrially sourced palynomorphs also suggest correlation of the carbonates of the Haushi limestone with the highest part of the clastic lower Gharif Member in South Oman, above the Ulanisphaeridium omanensis Biozone or Maximum Flooding Shale in that area. Using the new biozonation, the distribution of facies has been mapped for three time slices. This reveals an increase in carbonate deposition during the Sakmarian due to distancing and deepening of the terrigenous source, coupled with climatic warming, culminating with a regressive trend at the end of the cycle. A progressive increase in carbonate deposition is recorded westward into the basin.
CITATION STYLE
Angiolini, L., Stephenson, M. H., & Leven, E. J. (2006). Correlation of the Lower Permian surface Saiwan Formation and subsurface Haushi limestone, Central Oman. GeoArabia, 11(3), 17–38. https://doi.org/10.2113/geoarabia110317
Mendeley helps you to discover research relevant for your work.