Cancer stem-like cells mediate tumor initiation, progression, and therapy resistance; how-ever, their identification and selective eradication remain challenging. Herein, we analyze the metabolic dependencies of glioblastoma stem-like cells (GSCs) with high-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy. We stratify our in vitro GSC models into two sub-types primarily based on their relative amount of glutamine in relationship to glutamate (Gln/Glu). Gln/GluHigh GSCs were found to be resistant to glutamine deprivation, whereas Gln/GluLow GSCs respond with significantly decreased in vitro clonogenicity and impaired cell growth. The starvation resistance appeared to be mediated by an increased expression of the glutamate/cystine antiporter SLC7A11/xCT and efficient cellular clearance of reactive oxygen species (ROS). More-over, we were able to directly correlate xCT-dependent starvation resistance and high Gln/Glu ratios with in vitro clonogenicity, since targeted differentiation of GSCs with bone morphogenic protein 4 (BMP4) impaired xCT expression, decreased the Gln/Glu ratio, and restored the sensitivity to glutamine starvation. Moreover, significantly reduced levels of the oncometabolites lactate (Lac), phosphocholine (PC), total choline (tCho), myo-inositol (Myo-I), and glycine (Gly) were observed in differentiated GSCs. Furthermore, we found a strong association between high Gln/Glu ratios and increased expression of Zinc finger E-box-binding homeobox 1 (ZEB1) and xCT in primary GBM tumor tissues. Our analyses suggest that the inhibition of xCT represents a potential therapeutic target in glioblastoma; thus, we could further extend its importance in GSC biology and stress responses. We also propose that monitoring of the intracellular Gln/Glu ratio can be used to predict nutrient stress resistance.
CITATION STYLE
Koch, K., Hartmann, R., Suwala, A. K., Rios, D. H., Kamp, M. A., Sabel, M., … Maciaczyk, J. (2021). Overexpression of cystine/glutamate antiporter xct correlates with nutrient flexibility and zeb1 expression in highly clonogenic glioblastoma stem-like cells (Gscs). Cancers, 13(23). https://doi.org/10.3390/cancers13236001
Mendeley helps you to discover research relevant for your work.