Air pollution exposure and lung function in highly exposed subjects in Beijing, China: A repeated-measure study

76Citations
Citations of this article
112Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Exposure to ambient particulate matter (PM) has been associated with reduced lung function. Elemental components of PM have been suggested to have critical roles in PM toxicity, but their contribution to respiratory effects remains under-investigated. We evaluated the effects of traffic-related PM2.5 and its elemental components on lung function in two highly exposed groups of healthy adults in Beijing, China.Methods: The Beijing Truck Driver Air Pollution Study (BTDAS) included 60 truck drivers and 60 office workers evaluated in 2008. On two days separated by 1-2 weeks, we measured lung function at the end of the work day, personal PM2.5, and nine elemental components of PM2.5 during eight hours of work, i.e., elemental carbon (EC), potassium (K), sulfur (S), iron (Fe), silicon (Si), aluminum (Al), zinc (Zn), calcium (Ca), and titanium (Ti). We used covariate-adjusted mixed-effects models including PM2.5 as a covariate to estimate the percentage change in lung function associated with an inter-quartile range (IQR) exposure increase.Results: The two groups had high and overlapping exposure distributions with mean personal PM2.5 of 94.6 μg/m3 (IQR: 48.5-126.6) in office workers and 126.8 μg/m3 (IQR: 73.9-160.5) in truck drivers. The distributions of the nine elements showed group-specific profiles and generally higher levels in truck drivers. In all subjects combined, forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) did not significantly correlate with PM2.5. However, FEV1 showed negative associations with concentrations of four elements: Si (-3.07%, 95% CI: -5.00; -1.11, IQR: 1.54), Al (-2.88%, 95% CI: -4.91; -0.81, IQR: 0.86), Ca (-1.86%, 95% CI: -2.95; -0.76, IQR: 1.33), and Ti (-2.58%, 95% CI: -4.44; -0.68, IQR: 0.03), and FVC showed negative associations with concentrations of three elements: Si (-3.23%, 95% CI: -5.61; -0.79), Al (-3.26%, 95% CI: -5.73; -0.72), and Ca (-1.86%, 95% CI: -3.23; -0.47). In stratified analysis, Si, Al, Ca, and Ti showed associations with lung function only among truck drivers, and no significant association among office workers.Conclusion: Selected elemental components of PM2.5 showed effects on lung function that were not found in analyses of particle levels alone.

Cite

CITATION STYLE

APA

Baccarelli, A. A., Zheng, Y., Zhang, X., Chang, D., Liu, L., Wolf, K. R., … Hou, L. (2014). Air pollution exposure and lung function in highly exposed subjects in Beijing, China: A repeated-measure study. Particle and Fibre Toxicology, 11(1). https://doi.org/10.1186/s12989-014-0051-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free