In aluminium production, anode effects occur when the alumina content in the bath is so low that normal fused salt electrolysis cannot be maintained. This is followed by a rapid increase of pot voltage from about 4.3 V to values in the range from 10 to 80 V. As a result of a local depletion of oxide ions, the cryolite decomposes and forms climate-relevant perfluorocarbon (PFC) gases. The high pot voltage also causes a high energy input, which dissipates as heat. In order to ensure energy-efficient and climate-friendly operation, it is important to predict anode effects in advance so that they can be prevented by prophylactic actions like alumina feeding or beam downward movements. In this paper a classification model is trained with aggregated time series data from TRIMET Aluminium SE Essen (TAE) that is able to predict anode effects at least 1 min in advance. Due to a high imbalance in the class distribution of normal state and labeled anode effect state as well as possible model’s weaknesses the final F1 score of 32.4% is comparatively low. Nevertheless, the prediction provides an indication of possible anode effects and the process control system may react on it. Consequent practical implications will be discussed.
CITATION STYLE
Kremser, R., Grabowski, N., Düssel, R., Mulder, A., & Tutsch, D. (2020). Anode effect prediction in hall-héroult cells using time series characteristics. Applied Sciences (Switzerland), 10(24), 1–13. https://doi.org/10.3390/app10249050
Mendeley helps you to discover research relevant for your work.