The objective of this study was to evaluate the susceptibility of metallo-β-lactamase (MBL)-producing Acinetobacter baumannii (A. baumannii) clinical isolates to biocides. We also determined the prevalence and correlation of efflux pump genes, class 1 integron and MBL encoding genes. In addition, blaVIM, blaNDM-1, qacE and qacE∆1 nucleotide sequence analysis was performed and compared to sequences retrieved from GenBank at the National Center for Biotechnology Information database. A. baumannii had a resistance rate to carbapenem of 71.4% and 39.3% and was found to be a MBL producer. The minimum inhibitory concentrations (MICs) of chlorhexidine and cetrimide were higher than the recommended concentrations for disinfection in 54.5% and 77.3% of MBL-positive isolates respectively and their MICs were significantly higher among qac gene-positive isolates. Coexistence of qac genes was detected in 68.1% and 50% of the isolates with blaVIM and blaNDM-1 respectively. There was a significant correlation between the presence of qac genes and MBL-encoding blaVIM and blaNDM-1 genes. Each of the blaNDM-1, blaVIM, qacE and qacE∆1 DNA sequences showed homology with each other and with similar sequences reported from other countries. The high incidence of Verona integron-encoded metallo-β-lactamases (VIM) and New-Delhi-metallo-β-lactamase (NDM) and qac genes in A. baumannii highlights emerging therapeutic challenges for being readily transferable between clinically relevant bacteria. In addition reduced susceptibility to chlorhexidine and cetrimide and the potential for cross resistance to some antibiotics necessitates the urgent need for healthcare facilities to periodically evaluate biocides efficacy, to address the issue of antiseptic resistance and to initiate a “biocidal stewardship”.
CITATION STYLE
Gomaa, F. A. M., Helal, Z. H., & Khan, M. I. (2017). High prevalence of blandm-1, blavim, qace, and qace∆1 genes and their association with decreased susceptibility to antibiotics and common hospital biocides in clinical isolates of acinetobacter baumannii. Microorganisms, 5(2). https://doi.org/10.3390/microorganisms5020018
Mendeley helps you to discover research relevant for your work.