MiR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCϵ and ZEB1 inhibition

57Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Radiotherapy is one of the main treatment options for non-metastatic prostate cancer (PCa). Although treatment technical optimization has greatly improved local tumor control, a considerable fraction of patients still experience relapse due to the development of resistance. Radioresistance is a complex and still poorly understood phenomenon involving the deregulation of a variety of signaling pathways as a consequence of several genetic and epigenetic abnormalities. In this context, cumulative evidence supports a functional role of microRNAs in affecting radioresistance, suggesting the modulation of their expression as a novel radiosensitizing approach. Here, we investigated for the first time the ability of miR-205 to enhance the radiation response of PCa models. Methods: miR-205 reconstitution by a miRNA mimic in PCa cell lines (DU145 and PC-3) was used to elucidate miR-205 biological role. Radiation response in miRNA-reconstituted and control cells was assessed by clonogenic assay, immunofluorescence-based detection of nuclear γ-H2AX foci and comet assay. RNAi was used to silence the miRNA targets PKCϵ or ZEB1. In addition, target-protection experiments were carried out using a custom oligonucleotide designed to physically disrupt the pairing between the miR-205 and PKCϵ. For in vivo experiments, xenografts generated in SCID mice by implanting DU145 cells stably expressing miR-205 were exposed to 5-Gy single dose irradiation using an image-guided animal micro-irradiator. Results: miR-205 reconstitution was able to significantly enhance the radiation response of prostate cancer cell lines and xenografts through the impairment of radiation-induced DNA damage repair, as a consequence of PKCϵ and ZEB1 inhibition. Indeed, phenocopy experiments based on knock-down of either PKCϵ or ZEB1 reproduced miR-205 radiosensitizing effect, hence confirming a functional role of both targets in the process. At the molecular level, miR-205-induced suppression of PKCϵ counteracted radioresistance through the impairment of EGFR nuclear translocation and the consequent DNA-PK activation. Consistently, disruption of miR-205-PKCϵ 3'UTR pairing almost completely abrogated the radiosensitizing effect. Conclusions: Our results uncovered the molecular and cellular mechanisms underlying the radiosensitizing effect of miR-205. These findings support the clinical interest in developing a novel therapeutic approach based on miR-205 reconstitution to increase PCa response to radiotherapy.

Cite

CITATION STYLE

APA

El Bezawy, R., Tinelli, S., Tortoreto, M., Doldi, V., Zuco, V., Folini, M., … Zaffaroni, N. (2019). MiR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCϵ and ZEB1 inhibition. Journal of Experimental and Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1060-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free